<button id="2ddn7"><acronym id="2ddn7"></acronym></button>

<button id="2ddn7"><acronym id="2ddn7"></acronym></button>

  • <button id="2ddn7"><object id="2ddn7"></object></button>
      1. <s id="2ddn7"></s>
        更多課程 選擇中心


        Python培訓

        400-111-8989

        Python入門書籍推薦,12本Python大牛都看的書籍

        • 發布:Python培訓
        • 來源:Python教程知識
        • 時間:2017-10-31 16:39

        在最新一期的異周話題中,80%讀者認為Python是最好的編程語言,知乎上類似的問題也很多,例如如何入門Python?如何3個月內入門Python?雖然現在可以學習的Python途徑很多,但是想要打好牢固的基礎知識,系統的學習Python的知識體系,還需要靠閱讀專業的書籍來不斷積累。

        誰會成為AI 和大數據時代的第一開發語言?

        這本已是一個不需要爭論的問題。如果說三年前,Matlab、Scala、R、Java 和 Python還各有機會,局面尚且不清楚,那么三年之后,趨勢已經非常明確了,特別是前兩天 Facebook 開源了 PyTorch 之后,Python 作為 AI 時代頭牌語言的位置基本確立,未來的懸念僅僅是誰能坐穩第二把交椅。

        學習Python之路其修遠兮,能否跨進時下最熱的人工智能領域,無疑學好Python是通往高薪的捷徑之路。

        《Python核心編程 第3版》

        暢銷經典的Python基礎教程學習手冊進階圖書

        兼顧Python2和Python3

        機器學習 數據處理 網絡爬蟲熱門編程語言

        Python開發人員的案頭常備

        編輯推薦

        全面涵蓋當今應用開發中的眾多領域為中級Python開發人員提供杰出實踐方法涵蓋大量實用的代碼案例每章末尾的習題有助于鞏固所學知識

        想進一步提升Python編程水平?請深入分析真實應用程序中使用的大量相關主題涵蓋了正則表達式、Internet/網絡編程、GUI、SQL/數據庫/ORM、多線程、Web開發了解當前的開發區域,比如Google 、Twitter、MongoDB、OAuth、Python 3遷移、Java/Jython囊括有關Django、Google App Engine、CSV/JSON/XML和Microsoft Office的全新內容。包含Python 2和Python 3代碼,以便立即可以使用提供了代碼片段、互動案例和實用練習,旨在鞏固Python技能

        《Python編程快速上手 讓繁瑣工作自動化》

        美亞暢銷Python編程入門圖書

        Python3實戰指南

        帶你快速實現Python高效編程

        編輯推薦

        美亞暢銷Python編程圖書,幫助你通過編程快速實現工作自動化在本書中,你將學習利用Python 編程,在幾分鐘內完成手工需要幾小時的工作,而事先卻無需具備編程經驗。一旦掌握了編程的基礎知識,你就可以毫不費力地創建Python 程序,完成高效的自動化工作,包括:

        ● 在一個文件或多個文件中搜索文本;

        ● 創建、更新、移動和重命名文件和文件夾;

        ● 搜索網頁和下載的在線內容;

        ● 在任意大小的Excel電子表格中更新和格式化數據;

        ● 拆分、合并PDF文件,以及如何加水印和加密;

        ● 發送提醒郵件和文本通知;

        ● 填寫在線表格。本書的作者Al Sweigart是一位杰出Python程序員,他還是《Python 密碼學編程》、《Python 游戲編程快速上手》和《Python 和Pygame 游戲開發指南》的作者。

        《“笨辦法”學Python(第3版)》

        盡享5小時的完整視頻教程

        跟著數十萬人的Python導師學Python編程入門基礎教程

        為Web開發實戰 數據分析打下堅實基礎

        編輯推薦

        Zed Shaw完善了這個堪稱世上*好的Python學習系統。只要跟著學習,你就會和迄今為止數十萬Zed教過的初學者一樣獲得成功。

        在這本書中,你將通過完成52個精心設計的習題來學會Python。閱讀這些習題,把習題的代碼精確地寫出來(禁止復制和粘貼!),修正你的錯誤,觀察程序的運行。在這個過程中,你將了解軟件是如何工作的,好的程序看起來是什么樣子,怎樣閱讀、編寫、思考代碼,以及如何用專業程序員的技巧來找出并修正錯誤。*重要的是,你將學到下面這些編寫優秀的Python軟件必需的初始技能。

        這本書會讓你的每一分鐘投入都有回報。Python是世界上*強大、*受歡迎的編程語言之一,很快你就會成為一名Python程序員。

        你還可以看Zed的視頻!隨書附贈的DVD中包含5個多小時激情揮灑的教學內容:一部完整的Python視頻教程!

        《像計算機科學家一樣思考Python 第2版》

        學會像計算機科學家一樣思考 輕松學Python

        編輯推薦

        如果想要學習如何編程,從Python語言入手是一個很好的開端。本書從基本的編程概念開始,一步步引導讀者了解Python語言,再逐漸掌握函數、遞歸、數據結構和面向對象設計等高階概念。本書第2版及其輔助代碼均已升級,支持Python 3。每章后的練習可以幫助讀者加深對剛學的編程概念的理解。本書是高中和大學階段的學生、自學者,以及需要了解編程基礎的專業人士的理想讀物。初學者可以在瀏覽器中學習如何開始Python編程。

        從基礎開始,包括語言的語法和語義。

        掌握每一個編程概念的清晰定義。

        循序漸進地學習值、變量、語句、函數和數據結構。

        了解如何操作文件和數據庫。

        理解對象、方法和面向對象編程。

        使用各種調試技巧來修復語法錯誤、運行時錯誤和語義錯誤。

        通過一系列案例研究來探索函數、數據結構和算法。本書的示例代碼均在GitHub倉庫中維護,讀者很容易下載和修改。

        《Python高級編程 第2版》

        Python進階教程 機器學習人工智能深度學習開發熱門編程語言 web開發與后端工程師參考指南 基于Python3.5撰寫

        編輯推薦

        Python是一門動態編程語言,它簡單而又強大,適用于眾多領域。盡管編寫Python代碼比較容易,但是編寫高效且易于維護和復用的代碼是一個挑戰。 本書的重點是讓你熟悉zui佳實踐、有用的工具以及標準,這都是Python專業人士每天使用的。首先,你將了解Python 3.5中新增加的功能以及可以提高生產力的快速技巧。接下來,你將學習使用這個新版本中的高-級且有用的Python語法元素,以及實現元編程的不同方法。本書講解了代碼管理工具、編寫清晰文檔的方法和測試驅動開發,這些都是編寫代碼的重要因素。通過學習優化的一般原則、查找瓶頸的策略以及應用優化的選定工具,你可以對如何編寫高效的代碼有更深入的理解。 讀完本書后,你會成為一名可以編寫高效且可維護代碼的專家。 通過閱讀本書,你將能夠: 了解在Python社區中廣泛采用的約定和zui佳實踐; 高效打包Python代碼,以便將其應用于社區和生產; 應用在遠程系統上自動化部署代碼的簡單且輕量的方法; 提高代碼的質量、可靠性及性能; 在Python中編寫并發代碼; 使用其他語言編寫的代碼來擴展Python。

        《精通Python自然語言處理》

        用Python開發令人驚訝的NLP項目 自然語言處理任務

        掌握利用Python設計和構建給予NLP的應用的實踐

        編輯推薦

        自然語言處理(NLP)是有關計算語言學與人工智能的研究領域之一。NLP主要關注人機交互,它提供了計算機和人類之間的無縫交互,使得計算機在機器學習的幫助下理解人類語言。 本書詳細介紹如何使用Python執行各種自然語言處理(NLP)任務,并幫助讀者掌握利用Python設計和構建基于NLP的應用的zui佳實踐。本書引導讀者應用機器學習工具來開發各種各樣的模型。對于訓練數據的創建和主要NLP應用的實現,例如命名實體識別、問答系統、語篇分析、詞義消歧、信息檢索、情感分析、文本摘要以及指代消解等,本書都進行了清晰的介紹。本書有助于讀者使用NLTK創建NLP項目并成為相關領域的專家。 通過閱讀本書,你將能夠:

        ● 實現字符串匹配算法以及標準化技術;

        ● 實現統計語言建模技術;

        ● 深刻理解詞干提取器、詞形還原器、形態分析器以及形態生成器的開發;

        ● 開發搜索引擎并實現詞性標注和統計建模(包含n-gram方法)等相關概念;

        ● 熟悉諸如樹型庫建設、CFG建設、CYK以及Earley線圖解析算法等相關概念;

        ● 開發基于NER的系統并理解和應用情感分析的相關概念;

        ● 理解并實現信息檢索和文本摘要等相關概念;

        ● 開發語篇分析系統以及基于指代消解的系統。

        《Python機器學習實踐指南》

        直接上手的教學內容

        身臨其境的寫作風格

        輕松掌握機器學習實戰知識

        應用高級機器學習方法解決日常問題

        編輯推薦

        機器學習正在迅速成為數據驅動型世界的一個bi備模塊。許多不同的領域,如機器人、醫學、零售和出版等,都需要依賴這門技術。通過閱讀 Python機器學習實踐指南 ,你將學習如何一步步構建真實的機器學習應用程序。 Python機器學習實踐指南 以通俗易懂,簡潔明了的方式,教你如何使用機器學習來收集、分析并操作大量的數據。通過易于理解的項目,本書講解如何處理各種類型的數據、如何以及何時應用不同的機器學習技術,包括監督學習和無監督學習。本書中的每個項目都同時提供了教學和實踐,你將學習如何使用聚類技術來發現低價的機票,以及如何使用線性回歸找到一間便宜的公寓 。 Python機器學習實踐指南 適合的讀者包括了解數據科學的Python程序員、數據科學家、架構師,以及想要構建完整的、基于Python的機器學習系統的人們。 通過閱讀Python機器學習實踐指南 ,你將能: ·了解Python機器學習的生態系統; ·了解如何執行線性回歸; ·機器視覺概念的介紹; ·高級數據可視化技術; ·如何使用第三方API,部署機器學習模型; ·時間序列的建模技術; ·如何構建無監督模型。

        《用Python寫網絡爬蟲》

        用Python進行數據處理和數據挖掘的代表著作

        剖析網絡爬蟲技術的實現原理

        精通Python網絡爬蟲實戰

        編輯推薦

        作為一種便捷地收集網上信息并從中抽取出可用信息的方式,網絡爬蟲技術變得越來越有用。使用Python這樣的簡單編程語言,你可以使用少量編程技能就可以爬取復雜的網站。 《用Python寫網絡爬蟲》作為使用Python來爬取網絡數據的杰出指南,講解了從靜態頁面爬取數據的方法以及使用緩存來管理服務器負載的方法。此外,本書還介紹了如何使用AJAX URL和Firebug擴展來爬取數據,以及有關爬取技術的更多真相,比如使用瀏覽器渲染、管理cookie、通過提交表單從受驗證碼保護的復雜網站中抽取數據等。本書使用Scrapy創建了一個高級網絡爬蟲,并對一些真實的網站進行了爬取。 《用Python寫網絡爬蟲》介紹了如下內容: 通過跟蹤鏈接來爬取網站; 使用lxml從頁面中抽取數據; 構建線程爬蟲來并行爬取頁面; 將下載的內容進行緩存,以降低帶寬消耗; 解析依賴于JavaScript的網站; 與表單和會話進行交互; 解決受保護頁面的驗證碼問題; 對AJAX調用進行逆向工程; 使用Scrapy創建高級爬蟲。 本書讀者對象 本書是為想要構建可靠的數據爬取解決方案的開發人員寫作的,本書假定讀者具有一定的Python編程經驗。當然,具備其他編程語言開發經驗的讀者也可以閱讀本書,并理解書中涉及的概念和原理。

        《Python面向對象編程指南》

        掌握Python面向對象編程的精髓

        構建強大的實際應用程序

        編輯推薦

        本書致力于深入講解Python語言的高級特性,通過豐富、強大的代碼示例為讀者循序漸進地講解如何編寫高質量的Python代碼。本書可謂是成就Python編程高手的必讀之選。本書通過實際的例子對Python中面向對象編程的理念進行介紹。針對所有可用于和Python內置功能進行無縫結合的特殊方法,本書都提供了詳細示例,并且介紹了如何使用JSON、YAML、Pickle、CSV、XML、Shelve和SQL來創建持久化對象以及在進程間傳輸對象。本書還介紹了Logging和Warning模塊、單元測試、配置文件以及如何使用命令行。本書主要分為3個部分:用特殊方法實現Python風格的類;持久化和序列化;測試、調試、部署和維護。特殊方法部分又分為:初始化方法、基本特殊方法、屬性訪問、可調用對象、上下文、容器、集合、數值,以及裝飾器和mixin類等高級技術。本書示例豐富,通過諸多實際的例子對Python中面向對象編程的理念進行介紹,有利于讀者更好地掌握Python的高級特性,編寫成更好的實際應用程序。

        《NLTK基礎教程 用NLTK和Python庫構建機器學習應用》

        NLTK和Python庫構建機器學習應用

        編輯推薦

        自然語言處理(NLP)屬于人工智能與計算機語言學的交叉領域,處理的是計算機與人類語言之間的交互問題。隨著人機交互需求的日益增長,計算機具備處理當前主要自然語言的能力已經成為了一個必然趨勢。NLTK正是這一領域中一個強大而穩健的工具包。 在這本書中,我們首先會介紹一些與NLP相關的知識。然后,我們會探討一些與數據科學相關的任務,通過這些任務來學習如何從零開始構建自定義的標識器和解析器。在此過程中,我們將會深度探索NLP領域的基本概念,為這一領域各種開源的Python工具和庫提供具有實踐意義的見解。接下來,我們將會介紹如何分析社交媒體網站,發現熱門話題,進行輿情分析。zui后,我們還會介紹一些用于處理大規模文本的工具。 在閱讀完本書之后,您將會對NLP與數據科學領域中的概念有一個充分的了解,并能將這些知識應用到日常工作中。 如果您是NLP或機器學習相關領域的愛好者,并有一些文本處理的經驗,那么本書就是為你量身定做的。此外,這本書也是專業Python程序員快速學習NLTK庫的理想選擇。 通過本書,你將學會: ■ 了解自然語言的復雜性以及機器對它們的處理方式。 ■ 如何利用標識化處理手段清理文本歧義,并利用分塊操作更好地處理數據。 ■ 探索不同標簽類型的作用,并學習如何將句子標簽化。 ■ 如何根據自己的需要來創建自定義的解析器和標識器。 ■ 如何構建出具有拼寫檢查、搜索、機器翻譯以及問答系統等功能的實用程序。 ■ 如何通過信息爬取與捕獲的手段對相關數據內容進行檢索。 ■ 如何通過特性的提取與選取,構建出針對不同文本的分類系統。 ■ 如何使用各種第三方Python庫,如pandas、scikit-learn、matplotlib、gensim。 ■ 如何對社交媒體網站進行分析,包括發掘熱門話題、輿情分析等。

        《Python高性能編程》

        深刻理解Python的實現

        讓你的Python代碼運行的更快

        編輯推薦

        Python代碼僅僅能夠正確運行還不夠,你需要讓它運行得更快。通過探索設計決策背后的基礎理論,本書幫助你更加深刻地理解Python的實現。你將學習如何找到性能瓶頸,以及如何在大數據量的程序中顯著加快代碼。 如何利用多核架構或集群的優點?如何構建一個在不損失可靠性的情況下具備可伸縮性的系統?有經驗的Python程序員將學到針對這些問題或者其他問題的具體解決方案,以及來自那些在社交媒體分析、產品化機器學習和其他場景下使用高性能Python編程的公司的成功案例。 通過閱讀本書,你將能夠: ■ 更好地掌握numpy、Cython和剖析器; ■ 了解Python如何抽象化底層的計算機架構; ■ 使用剖析手段來尋找CPU時間和內存使用的瓶頸; ■ 通過選擇合適的數據結構來編寫高效的程序 ■ 加速矩陣和矢量計算; ■ 使用工具把Python編譯成機器代碼; ■ 管理并發的多I O和計算操作; ■ 把多進程代碼轉換到在本地或者遠程集群上運行; ■ 用更少的內存解決大型問題。

        “ 盡管P y thon在學術和工業領域很流行, 但人們也經常由于Python程序運行太慢而放棄它。本書通過全面介紹改善優化Python計算速度和可擴展性的策略,從而消除人們的這種誤 解。”

        ——Jake VanderPlas 華盛頓大學

        《Python物理建模初學者指南》

        # 用Python解決科學問題的實踐指南,眾多世界知名大學教授推薦閱讀 #

        編輯推薦:

        本書旨在幫助Python 學習者掌握足夠的Python編程技能以進行物理建模。全書分為8 章和5 個附錄,包括Python 基礎知識、數據結構與程序控制、 數據輸入和輸出、Python 高級知識和高級技術等,其中貫穿了三次不同方向和難度的物理建模上機實驗。附錄部分介紹了Python 的安裝、錯誤消息、版本差異以及可供深入學習的話題。

        本書適合Python 初學者閱讀,尤其適合想要用Python 進行科學計算和物理建模的讀者學習參考。

        本文內容轉載自網絡,本著分享與傳播的原則,版權歸原作者所有,如有侵權請聯系我們進行刪除!

        預約申請免費試聽課

        填寫下面表單即可預約申請免費試聽!怕錢不夠?可就業掙錢后再付學費! 怕學不會?助教全程陪讀,隨時解惑!擔心就業?一地學習,可全國推薦就業!

        上一篇:Python列表:初學者應該懂得操作和內部實現
        下一篇:學習Python編程的四書五經

        Python中類的屬性有哪幾種

        Python語法你知道多少

        Python 中常見的配置文件寫法

        Python爬蟲可以做什么

        • 掃碼領取資料

          回復關鍵字:視頻資料

          免費領取 達內課程視頻學習資料

        • 視頻學習QQ群

          添加QQ群:1143617948

          免費領取達內課程視頻學習資料

        Copyright ? 2021 Tedu.cn All Rights Reserved 京ICP備08000853號-56 京公網安備 11010802029508號 達內時代科技集團有限公司 版權所有

        選擇城市和中心
        黑龍江省

        吉林省

        河北省

        湖南省

        貴州省

        云南省

        廣西省

        海南省

        青青青草网站免费观看|青青青视频在线观看 超真实强奷视频在线看 百度 好搜 搜狗
        <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>